Colorectal cancer is the second most common type of cancer in both men and women. In most cases (95%), colorectal cancer appears sporadically, meaning because of acquired genetic mutations in the colon’s mucous membrane. Only 5% of colon cancer is hereditary.
Personalized medication therapies are gaining more and more ground in colon cancer treatment. For targeted therapies in particular, success rates differ wildly, thus making the tumor biology a key factor in personalizing the treatment. Molecular testing allows for a reliable prediction as to whether or not a treatment will be individually successful, meaning that unsuccessful and unnecessary procedures and their side effects can be eradicated from patients’ treatment plans.
More than 20.000 genes determine the tumor-biological behavior (growth rate, aggression, metastasis, response to treatment) of any given tumor, yet only a few find consideration in conventional cancer treatment selection.
From a floating iceberg less than 20% is visible on the surface. In contrast, the percentage of treatment-relevant tumor genes routinely recognized by the oncologist is only a few in a thousand.
Clinically important innovative assays for colon cancer
NextGen Oncology offers a wide range of cutting-edge genetic analyses to uncover clinically relevant features of the individual tumor. These innovative methods offer oncologists an in-depth look at the tumor biology/genetics, thus paving the way to a personalized cancer treatment.
Our PANTHER Test makes an important contribution to an individualized tumor treatment as it provides a comprehensive analysis of clinically useful gene activity patterns. PANTHER comprises a complete gene expression chip transcriptome analysis augmented with immunohistochemical analyses and quantitative PCR analyses of genes with key functions in clinically important signal transduction pathways.
Various Gene Mutation Panels uncover genetic variations for a personalized targeted treatment in the context of precision oncology.
Our highly recommended ELE.PHANT Assay is a start-of-the-art contribution to a personalized treatment by precision oncology.
By Liquid Biopsy (LINK) a tumor and the treatment tailored to it can be assessed without having to undergo an invasive tumor tissue biopsy. A mere blood sample is enough. Circulating tumor cells (CTCs) or circulating cell-free tumor DNA (cftDNA) form the analytical basis of liquid biopsy. NextGen Oncology offers sensitive technologies for the determination of circulating tumor cells (CTCs) in the peripheral blood for estimation of the tumor burden and even more important for treatment response monitoring.
In this context, an analysis of the mutation spectrum of circulating free tumor DNA (cfDNA) in the patient’s blood plasma enables the monitoring of the response to a treatment with mutation-specific drugs. This test is of particular clinical importance since tumors treated with targeted therapy often change their mutational pattern within several months. If this happens, they no longer respond to the current therapy.
Cytotoxic treatment offers uncertain prospects of success while severely limiting a patient’s quality of life. Our chemosensitivity tests move away from the trial and error principle of conventional cytotoxic treatment. A prediction of response to a great variety of cytotoxic drugs and natural compounds is the focus of these tests.
Isolated tumor cells and cell clusters from colorectal cancer: nuclei colored in blue, cytoplasmic tumor-specific markers in green.
Cancer Vaccine development
In recent years, a deeper insight into the complex tumor immunology as well as the availability of new genetic tools have promoted the development of vaccine-based cancer immunotherapy.
These innovations in developing individual vaccines are bringing the dream of personalized, highly specific and gentle cancer therapy closer to realization. NextGen Oncology is focused on the design of personalized cancer vaccines based on the individual mutation pattern of the patient, so-called mutated neoantigen peptide vaccines.
Deep freezing of tumor tissue (Cryopreservation)
The standard procedure for the storage of tumor tissue involves formalin fixation and embedding of the fixed tissue in paraffin blocks (FFPE blocks). The quality of FFPE block tissue is quit often impaired by various formalin-fixation related artefacts. This can undoubtedly be a serious drawback for present and future analytical procedures. Keeping this in mind, it can be of critical importance to have higher quality tumor tissue at hand. Deep-freezing (cryopreservation) of the tumor tissue is the solution. Uomorphis as part of the NextGen Oncology Group offers such cryopreservation, either as standard preservation frozen in the gas phase of liquid nitrogen at a temperature of under -190°C or as LIFE cryopreservation, in which the tumor cells are isolated and frozen alive in a computer-controlled specialized medium.
To determine the best and most promising course of action in your case, you are very welcome to contact MUDr. Luzbetak for a personal consultation.